Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
2.
Virol J ; 21(1): 81, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589896

RESUMO

Orthobunyavirus oropouche ense virus (OROV), the causative agent of Oropouche fever, is widely dispersed in Brazil and South America, causing sporadic outbreaks. Due to the similarity of initial clinical symptoms caused by OROV with other arboviruses found in overlapping geographical areas, differential diagnosis is challenging. As for most neglected tropical diseases, there is a shortage of reagents for diagnosing and studying OROV pathogenesis. We therefore developed and characterized mouse monoclonal antibodies and, one of them recognizes the OROV nucleocapsid in indirect immunofluorescent (IFA) and immunohistochemistry (IHC) assays. Considering that it is the first monoclonal antibody produced for detecting OROV infections, we believe that it will be useful not only for diagnostic purposes but also for performing serological surveys and epidemiological surveillance on the dispersion and prevalence of OROV in Brazil and South America.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Animais , Camundongos , Anticorpos Monoclonais , Infecções por Bunyaviridae/diagnóstico , Brasil/epidemiologia
3.
Viruses ; 16(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400037

RESUMO

Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of diseases in humans and is mainly found in African countries. This study aimed to genetically identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain was reactivated and subjected to whole genome sequencing using an Illumina-based approach. Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830 from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed the Senegal strain's clustering with BATV. This study corrects the misclassification, confirming the presence of BATV in West Africa. This research represents the first evidence of BATV circulation in West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective sequencing is crucial for reevaluating strains and identifying potential public health threats among neglected viruses.


Assuntos
Vírus Bunyamwera , Culicidae , Orthobunyavirus , Animais , Humanos , Vírus Bunyamwera/genética , Senegal , Filogenia , Estudos Retrospectivos , Orthobunyavirus/genética , Genômica , Ruminantes
4.
Viruses ; 16(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400069

RESUMO

Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.


Assuntos
Infecções por Bunyaviridae , Doenças dos Bovinos , Orthobunyavirus , Vírus Simbu , Bovinos , Animais , Gado , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Estudos Soroepidemiológicos , Sorogrupo , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Testes Diagnósticos de Rotina
6.
Nat Commun ; 15(1): 1121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321047

RESUMO

The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.


Assuntos
Arbovírus , Infecções por Bunyaviridae , Encefalite da Califórnia , Vírus La Crosse , Orthobunyavirus , Humanos , Criança , Animais , Camundongos , Replicação Viral , Músculos
8.
Microbiol Spectr ; 12(3): e0162923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323826

RESUMO

Oropouche virus (OROV) is characterized as a re-emerging arbovirus of great concern for public health, being responsible for several outbreaks of acute fever identified in Latin American countries, registering more than half a million reported cases. The incidence of reports of this virus is intrinsically favored by environmental conditions, in which such characteristics are related to the increase and distribution of the vector population to areas of human traffic. Moreover, there is a problem regarding the lack of diagnosis in Brazil that aggregates the success of the etiologic agent. Thus, by means of molecular techniques, we identified 27 positive cases of the OROV circulating in border locations in western Amazon, with 44.44% (12/27) of the cohort characterized as infected individuals with reported symptoms, mainly ranging from fever, myalgia, and back pain. Among the positive samples, it was possible to obtain a total of 48.14% (13/27) samples to analyze the S and M segments of Oropouche, which showed similarities among the Brazilian sequences. Thus, it was possible to verify the circulation of the OROV in Rondonia and border areas, in which the tracking of neglected arboviruses is necessary for the genomic surveillance of emerging and re-emerging viruses.IMPORTANCEThe western Amazon region is known for outbreaks of acute febrile illnesses, to which the lack of specific diagnostics for different pathogens hinders the management of patients in healthcare units. The Oropouche virus has already been recorded in the region in the 1990s. However, this is the first study, after this record, to perform the detection of individuals with acute febrile illness using a screening test to exclude Zika, dengue, and chikungunya, confirmed by sequencing the circulation of the virus in the state of Rondonia and border areas. We emphasize the importance of including diagnostics for viruses such as Oropouche, which suffers underreporting for years and is related to seasonal periods in Western Amazon locations, a factor that has a direct influence on public health in the region. In addition, we emphasize the importance of genomic surveillance in the elucidation of outbreaks that affect the resident population of these locations.


Assuntos
Orthobunyavirus , Infecção por Zika virus , Zika virus , Humanos , Orthobunyavirus/genética , Brasil/epidemiologia , Febre , Surtos de Doenças
11.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300320

RESUMO

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Assuntos
Orthobunyavirus , Glucosilceramidas , Ligação Viral , Lipidômica , Espectrometria de Massas
12.
Virus Res ; 341: 199318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224842

RESUMO

The Oropouche virus is an important arthropod-borne virus in the Peribunyaviridae family that can cause febrile illnesses, and it is widely distributed in tropical regions such as Central and South America. Since the virus was first identified, a large number of related cases are reported every year. No deaths have been reported to date, however, the virus can cause systemic infections, including the nervous and blood systems, leading to serious complications. The transmission of Oropouche virus occurs through both urban and sylvatic cycles, with the anthropophilic biting midge Culicoides paraensis serving as the primary vector in urban areas. Direct human-to-human transmission of Oropouche virus has not been observed. Oropouche virus consists of three segments, and the proteins encoded by the different segments enables the virus to replicate efficiently in the host and to resist the host's immune response. Phylogenetic analyses showed that Oropouche virus sequences are geographically distinct and have closer homologies with Iquitos virus and Perdoes virus, which belong to the family Peribunyaviridae. Despite the enormous threat it poses to public health, there are currently no licensed vaccines or specific antiviral treatments for the disease it causes. Recent studies have utilised imJatobal virusmunoinformatics approaches to develop epitope-based peptide vaccines, which have laid the groundwork for the clinical use of vaccines. The present review focuses on the structure, epidemiology, immunity and phylogeny of Oropouche virus, as well as the progress of vaccine development, thereby attracting wider attention and research, particularly with regard to potential vaccine programs.


Assuntos
Arbovírus , Infecções por Bunyaviridae , Orthobunyavirus , Vacinas , Humanos , Filogenia , Orthobunyavirus/genética , Infecções por Bunyaviridae/epidemiologia
13.
Vet Res Commun ; 48(1): 449-457, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831381

RESUMO

Akabane virus (AKAV) is known as a major teratogenic agent of ruminant fetuses. In this study, we investigated the relationship between porcine abnormal deliveries and AKAV by serology, pathology, and virology investigations using specimens from 16 stillborn fetuses delivered in southern Japan between 2013 and 2015. The major clinical manifestations in stillborn fetuses were hydranencephaly, arthrogryposis, spinal curvature, and both skeletal muscle and subcutaneous edema. Histologic examination of the specimens identified atrophy of skeletal muscle fibers accompanied by adipose replacement. Nonsuppurative encephalomyelitis and decreased neuronal density in the ventral horn of the spinal cord were shown in two separate fetuses, respectively. Neutralizing antibody titers to AKAV were detected in most of the tested fetuses (13/16). The AKAV sequences detected in the affected fetuses in 2013 and 2015 were highly identical and closely related to Japanese AKAV isolates which were isolated in 2013 and sorted into genogroup I of AKAV. Immunohistochemistry visualized AKAV antigens in the neuronal cells of the central nervous system of the fetuses. These findings indicate that AKAV was involved in the birth of abnormal piglets at the affected farm. The clinical manifestations and histopathological features in the stillborn fetuses were very similar to those in ruminant neonates affected by AKAV. To avoid misdiagnosis and to evaluate the precise impact of AKAV on pig reproduction, AKAV should be considered in differential diagnoses of reproductive failures in pigs.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Doenças dos Suínos , Animais , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/veterinária , Infecções por Bunyaviridae/patologia , Feto/patologia , Japão/epidemiologia , Ruminantes , Suínos , Doenças dos Suínos/diagnóstico
14.
Virus Res ; 339: 199265, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37940076

RESUMO

OBJECTIVES: Oya virus (OYAV) and Ebinur lake virus (EBIV) belong to the genus Orthobunyavirus within the Peribunyaviridae family, and both are recognized as the novel virus with potential threat to the animal or public health. Given their potential to cause outbreaks and their detection in diverse samples across different regions, the need for a reliable and efficient molecular detection method for OYAV and EBIV becomes imperative. METHODS: The S-segment of OYAV and EBIV was used for designing specific primer and probe sets, which were employed in a real-time reverse transcription quantitative PCR (RT-qPCR) assay. The analytical performance of these assays, encompassing specificity, sensitivity, reproducibility, and fitness for purpose, was thoroughly evaluated across various sample matrices. RESULTS: The developed RT-qPCR assays were very specific to their respective targets. Both assays were highly reproducible (%CV<3) and sensitive with the 95% limit of detection (LOD) of 0.80 PFU/mL for OYAV primer probe set and 0.37 PFU/mL for EBIV primer probe set. Furthermore, the assays fitness for purpose was good as it could detect the specific viruses in virus-spiked serum samples, virus-inoculated mosquito samples, field caught mosquitoes and biting midge samples. CONCLUSIONS: Our study has successfully developed specific, sensitive, and reliable RT-qPCR assays for the detection of OYAV and EBIV. These assays hold great promise for their potential application in clinical and field samples in the future.


Assuntos
Culicidae , Orthobunyavirus , Animais , Transcrição Reversa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos
15.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082138

RESUMO

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Assuntos
Infecções por Bunyaviridae , Encefalomielite , Orthobunyavirus , Gravidez , Feminino , Bovinos , Animais , Camundongos , Infecções por Bunyaviridae/veterinária , Orthobunyavirus/genética , Genótipo , Ruminantes
16.
Sci Rep ; 13(1): 22820, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129678

RESUMO

Bunyaviruses constitute a large and diverse group of viruses encompassing many emerging pathogens, such as Rift Valley fever virus (family Phenuiviridae), with public and veterinary health relevance but with very limited medical countermeasures are available. For the development of antiviral strategies, the identification and validation of virus-specific targets would be of high value. The cap-snatching mechanism is an essential process in the life cycle of bunyaviruses to produce capped mRNAs, which are then recognized and translated into viral proteins by the host cell translation machinery. Cap-snatching involves cap-binding as well as endonuclease functions and both activities have been demonstrated to be druggable in related influenza viruses. Here, we explore the suitability of the phenuivirus cap-binding function as a target in medium- and high-throughput drug discovery approaches. We developed a range of in vitro assays aiming to detect the interaction between the cap-binding domain (CBD) and the analogue of its natural cap-ligand m7GTP. However, constricted by its shallow binding pocket and low affinity for m7GTP, we conclude that the CBD has limited small molecule targeting potential using classical in vitro drug discovery approaches.


Assuntos
Orthobunyavirus , Orthomyxoviridae , Vírus de RNA , Animais , Capuzes de RNA/metabolismo , Ensaios de Triagem em Larga Escala , RNA Mensageiro/metabolismo , Vírus de RNA/metabolismo , Orthomyxoviridae/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
18.
Front Cell Infect Microbiol ; 13: 1193184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029255

RESUMO

In July 2018, a virus (JXLC1806-2) was isolated from Culicoides biting midges collected in Lichuan County, Jiangxi Province, China. The virus isolate showed significant cytopathic effects within 48 hours after inoculation with mammalian cells (BHK-21). JXLC1806-2 virus could form plaques in BHK-21 cells, and the virus titer was 1×105.6 pfu/mL. After inoculation with the virus, suckling mice developed disease and died. The nucleotide and amino sequence analysis showed that the JXLC1806-2 virus genome was composed of S, M and L segments. Phylogenetic analysis showed that the S, M and L genes of JXLC1806-2 virus belonged to the Tete serogroup, Orthobunyavirus, but formed an independent evolutionary branch from the other members of the Tete serogroup. The results showed that the JXLC1806-2 virus, which was named as Lichuan virus, is a new member of Tete serogroup, and this is the first time that a Tete serogroup virus has been isolated in China.


Assuntos
Ceratopogonidae , Orthobunyavirus , Animais , Camundongos , Orthobunyavirus/genética , Ceratopogonidae/genética , Filogenia , Genoma Viral , China , Mamíferos/genética
19.
J Vet Med Sci ; 85(12): 1324-1326, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37926512

RESUMO

Sathuperi virus (SATV) and Shamonda virus (SHAV) (family Peribunyaviridae, genus Orthobunyavirus, species Schmallenberg orthobunyavirus) have been suggested to cause congenital abnormalities in ruminants. In this study, we determined the complete genome sequences of SATV KSB-6/C/02 and SHAV KSB-2/C/08 strains, which were obtained from Culicoides biting midges in Japan, by next-generation sequencing and Sanger sequencing. The 3'- and 5'-untranslated region sequences of the M segment of SHAV KSB-2/C/08 strains are distinctly different from those of SATV KSB-6/C/02 and Schmallenberg viruses. This study provides the genome characterization of Japanese strains of SATV and SHAV and presented the genetic variation in the untranslated regions of Schmallenberg orthobunyavirus M segments.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Animais , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Japão
20.
Sci Rep ; 13(1): 18165, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875565

RESUMO

Mosquitoes interact with various organisms in the environment, and female mosquitoes in particular serve as vectors that directly transmit a number of microorganisms to humans and animals by blood-sucking. Comprehensive analysis of mosquito-borne viruses has led to the understanding of the existence of diverse viral species and to the identification of zoonotic arboviruses responsible for significant outbreaks and epidemics. In the present study on mosquito-borne bunyaviruses we employed a broad-spectrum RT-PCR approach and identified eighteen different additional species in the Phenuiviridae family and also a number of related but unclassified bunyaviruses in mosquitoes collected in Zambia. The entire RNA genome segments of the newly identified viruses were further analyzed by RNA sequencing with a ribonuclease R (RNase R) treatment to reduce host-derived RNAs and enrich viral RNAs, taking advantage of the dsRNA panhandle structure of the bunyavirus genome. All three or four genome segments were identified in eight bunyavirus species. Furthermore, L segments of three different novel viruses related to the Leishbunyaviridae were found in mosquitoes together with genes from the suspected host, the Crithidia parasite. In summary, our virus detection approach using a combination of broad-spectrum RT-PCR and RNA sequencing analysis with a simple virus enrichment method allowed the discovery of novel bunyaviruses. The diversity of bunyaviruses is still expanding and studies on this will allow a better understanding of the ecology of hematophagous mosquitoes.


Assuntos
Arbovírus , Culicidae , Orthobunyavirus , Vírus de RNA , Animais , Humanos , Feminino , Mosquitos Vetores , Orthobunyavirus/genética , Vírus de RNA/genética , Arbovírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...